74.18.61 problem 67

Internal problem ID [16547]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 67
Date solved : Monday, March 31, 2025 at 02:56:10 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 2 x^{2} y^{\prime \prime }+5 x y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.030 (sec). Leaf size: 20
Order:=6; 
ode:=2*x^2*diff(diff(y(x),x),x)+5*x*diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \frac {x^{{5}/{2}} c_2 +c_1}{x^{2}}+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 18
ode=2*x^2*D[y[x],{x,2}]+5*x*D[y[x],x]-2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to \frac {c_2}{x^2}+c_1 \sqrt {x} \]
Sympy. Time used: 0.732 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) + 5*x*Derivative(y(x), x) - 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{2} \sqrt {x} + \frac {C_{1}}{x^{2}} + O\left (x^{6}\right ) \]