Internal
problem
ID
[16529]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
49
Date
solved
:
Monday, March 31, 2025 at 02:55:39 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-8*diff(y(t),t)+16*y(t) = 1/t^3*exp(4*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-8*D[y[t],t]+16*y[t]==1/t^3*Exp[4*t]; DSolve[ode,y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(16*y(t) - 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(4*t)/t**3,0) ics = {} dsolve(ode,func=y(t),ics=ics)