Internal
problem
ID
[16511]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Chapter
4
review
exercises,
page
219
Problem
number
:
31
Date
solved
:
Monday, March 31, 2025 at 02:55:09 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)-6*diff(y(t),t)+13*y(t) = 3*exp(-2*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-6*D[y[t],t]+13*y[t]==3*Exp[-2*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(13*y(t) - 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - 3*exp(-2*t),0) ics = {} dsolve(ode,func=y(t),ics=ics)