74.18.7 problem 13

Internal problem ID [16493]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Chapter 4 review exercises, page 219
Problem number : 13
Date solved : Monday, March 31, 2025 at 02:54:44 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} 6 y^{\prime \prime }+5 y^{\prime }-4 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=6*diff(diff(y(x),x),x)+5*diff(y(x),x)-4*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{\frac {x}{2}}+c_2 \,{\mathrm e}^{-\frac {4 x}{3}} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 26
ode=6*D[y[x],{x,2}]+5*D[y[x],x]-4*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_1 e^{-4 x/3}+c_2 e^{x/2} \]
Sympy. Time used: 0.166 (sec). Leaf size: 17
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-4*y(x) + 5*Derivative(y(x), x) + 6*Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {4 x}{3}} + C_{2} e^{\frac {x}{2}} \]