74.17.1 problem 1

Internal problem ID [16461]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.9, page 215
Problem number : 1
Date solved : Monday, March 31, 2025 at 02:53:54 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} x^{2} y^{\prime \prime }+6 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 32
Order:=6; 
ode:=x^2*diff(diff(y(x),x),x)+6*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \sqrt {x}\, \left (c_1 \,x^{-\frac {i \sqrt {23}}{2}}+c_2 \,x^{\frac {i \sqrt {23}}{2}}\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.003 (sec). Leaf size: 44
ode=x^2*D[y[x],{x,2}]+6*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 x^{\frac {1}{2} \left (1+i \sqrt {23}\right )}+c_2 x^{\frac {1}{2} \left (1-i \sqrt {23}\right )} \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_regular",x0=0,n=6)
 
ValueError : Expected Expr or iterable but got None