Internal
problem
ID
[16451]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.8,
page
203
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 02:53:40 PM
CAS
classification
:
[_Gegenbauer, [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(2*x^2-1)*diff(diff(y(x),x),x)+2*x*diff(y(x),x)-3*y(x) = 0; ic:=y(0) = -2, D(y)(0) = 2; dsolve([ode,ic],y(x),type='series',x=0);
ode=(2*x^2-1)*D[y[x],{x,2}]+2*x*D[y[x],x]-3*y[x]==0; ic={y[0]==-2,Derivative[1][y][0] ==2}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*Derivative(y(x), x) + (2*x**2 - 1)*Derivative(y(x), (x, 2)) - 3*y(x),0) ics = {y(0): -2, Subs(Derivative(y(x), x), x, 0): 2} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)