Internal
problem
ID
[16449]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.8,
page
203
Problem
number
:
14
Date
solved
:
Monday, March 31, 2025 at 02:53:38 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using series method with expansion around
With initial conditions
Order:=6; ode:=(3-2*x)*diff(diff(y(x),x),x)+2*diff(y(x),x)-2*y(x) = 0; ic:=y(0) = 3, D(y)(0) = -2; dsolve([ode,ic],y(x),type='series',x=0);
ode=(3-2*x)*D[y[x],{x,2}]+2*D[y[x],x]-2*y[x]==0; ic={y[0]==3,Derivative[1][y][0] ==-2}; AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3 - 2*x)*Derivative(y(x), (x, 2)) - 2*y(x) + 2*Derivative(y(x), x),0) ics = {y(0): 3, Subs(Derivative(y(x), x), x, 0): -2} dsolve(ode,func=y(x),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)