Internal
problem
ID
[16342]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
8
Date
solved
:
Monday, March 31, 2025 at 02:50:43 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-6*diff(diff(diff(y(t),t),t),t)+13*diff(diff(y(t),t),t)-24*diff(y(t),t)+36*y(t) = 108*t; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]-6*D[ y[t],{t,3}]+13*D[y[t],{t,2}]-24*D[y[t],t]+36*y[t]==108*t; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-108*t + 36*y(t) - 24*Derivative(y(t), t) + 13*Derivative(y(t), (t, 2)) - 6*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)),0) ics = {} dsolve(ode,func=y(t),ics=ics)