Internal
problem
ID
[16333]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.5,
page
175
Problem
number
:
63
(c)
Date
solved
:
Monday, March 31, 2025 at 02:50:30 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=31/100*diff(diff(diff(y(t),t),t),t)+56/5*diff(diff(y(t),t),t)-49/5*diff(y(t),t)+53/10*y(t) = 0; ic:=y(0) = -1, D(y)(0) = -1, (D@@2)(y)(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=31/100*D[ y[t],{t,3}]+112/10*D[y[t],{t,2}]-98/10*D[y[t],t]+53/10*y[t]==0; ic={y[0]==-1,Derivative[1][y][0] ==-1,Derivative[2][y][0] ==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(53*y(t)/10 - 49*Derivative(y(t), t)/5 + 56*Derivative(y(t), (t, 2))/5 + 31*Derivative(y(t), (t, 3))/100,0) ics = {y(0): -1, Subs(Derivative(y(t), t), t, 0): -1, Subs(Derivative(y(t), (t, 2)), t, 0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out