74.12.52 problem 61

Internal problem ID [16288]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.4, page 163
Problem number : 61
Date solved : Monday, March 31, 2025 at 02:49:39 PM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t^{2} y^{\prime \prime }-4 t y^{\prime }+\left (t^{2}+6\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=t^{2} \cos \left (t \right ) \end{align*}

Maple. Time used: 0.005 (sec). Leaf size: 17
ode:=t^2*diff(diff(y(t),t),t)-4*t*diff(y(t),t)+(t^2+6)*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t^{2} \left (c_1 \sin \left (t \right )+c_2 \cos \left (t \right )\right ) \]
Mathematica. Time used: 0.03 (sec). Leaf size: 37
ode=t^2*D[y[t],{t,2}]-4*t*D[y[t],t]+(t^2+6)*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to \frac {1}{2} e^{-i t} t^2 \left (2 c_1-i c_2 e^{2 i t}\right ) \]
Sympy. Time used: 0.211 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) - 4*t*Derivative(y(t), t) + (t**2 + 6)*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t^{\frac {5}{2}} \left (C_{1} J_{\frac {1}{2}}\left (t\right ) + C_{2} Y_{\frac {1}{2}}\left (t\right )\right ) \]