Internal
problem
ID
[16235]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
69
Date
solved
:
Monday, March 31, 2025 at 02:47:57 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(x(t),t),t)+9*x(t) = sin(3*t); ic:=x(0) = 0, D(x)(0) = 0; dsolve([ode,ic],x(t), singsol=all);
ode=D[x[t],{t,2}]+9*x[t]==Sin[3*t]; ic={x[0]==0,Derivative[1][x][0 ]==0}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(9*x(t) - sin(3*t) + Derivative(x(t), (t, 2)),0) ics = {x(0): 0, Subs(Derivative(x(t), t), t, 0): 0} dsolve(ode,func=x(t),ics=ics)