Internal
problem
ID
[16198]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
31
Date
solved
:
Monday, March 31, 2025 at 02:46:34 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=8*diff(diff(y(t),t),t)+6*diff(y(t),t)+y(t) = 5*t^2; dsolve(ode,y(t), singsol=all);
ode=8*D[y[t],{t,2}]+6*D[y[t],t]+y[t]==5*t^2; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-5*t**2 + y(t) + 6*Derivative(y(t), t) + 8*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)