Internal
problem
ID
[16191]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
24
Date
solved
:
Monday, March 31, 2025 at 02:46:24 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-4*diff(y(t),t)+13*y(t) = 2*t*exp(-2*t)*sin(3*t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-4*D[y[t],t]+13*y[t]==2*t*Exp[-2*t]*Sin[3*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t*exp(-2*t)*sin(3*t) + 13*y(t) - 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)