Internal
problem
ID
[16179]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.2,
page
147
Problem
number
:
43
Date
solved
:
Monday, March 31, 2025 at 02:46:05 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*diff(y(t),t)+3*y(t) = 0; ic:=y(0) = a, D(y)(0) = b; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],{t,2}]+4*D[y[t],t]+3*y[t]==0; ic={y[0]==a,Derivative[1][y][0] ==b}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*y(t) + 4*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): a, Subs(Derivative(y(t), t), t, 0): b} dsolve(ode,func=y(t),ics=ics)