74.10.40 problem 40 (c)

Internal problem ID [16174]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.2, page 147
Problem number : 40 (c)
Date solved : Monday, March 31, 2025 at 02:45:59 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-6 y^{\prime }-16 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 17
ode:=diff(diff(y(t),t),t)-6*diff(y(t),t)-16*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{8 t}+c_2 \,{\mathrm e}^{-2 t} \]
Mathematica. Time used: 0.013 (sec). Leaf size: 22
ode=D[y[t],{t,2}]-6*D[y[t],t]-16*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to c_1 e^{-2 t}+c_2 e^{8 t} \]
Sympy. Time used: 0.154 (sec). Leaf size: 15
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-16*y(t) - 6*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} e^{- 2 t} + C_{2} e^{8 t} \]