Internal
problem
ID
[16171]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.2,
page
147
Problem
number
:
39
Date
solved
:
Monday, March 31, 2025 at 02:45:54 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
ode:=a*diff(diff(y(t),t),t)+2*b*diff(y(t),t)+c*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=a*D[y[t],{t,2}]+2*b*D[y[t],t]+c*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") c = symbols("c") y = Function("y") ode = Eq(a*Derivative(y(t), (t, 2)) + 2*b*Derivative(y(t), t) + c*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)