Internal
problem
ID
[16113]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 02:44:06 PM
CAS
classification
:
[[_Emden, _Fowler]]
With initial conditions
ode:=t^2*diff(diff(y(t),t),t)+7*t*diff(y(t),t)-7*y(t) = 0; ic:=y(1) = 2, D(y)(1) = -22; dsolve([ode,ic],y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+7*t*D[y[t],t]-7*y[t]==0; ic={y[1]==2,Derivative[1][y][1]==-22}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + 7*t*Derivative(y(t), t) - 7*y(t),0) ics = {y(1): 2, Subs(Derivative(y(t), t), t, 1): -22} dsolve(ode,func=y(t),ics=ics)