Internal
problem
ID
[16102]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
37
Date
solved
:
Monday, March 31, 2025 at 02:43:37 PM
CAS
classification
:
[[_homogeneous, `class C`], _dAlembert]
With initial conditions
ode:=diff(y(x),x) = (x-y(x))^(1/2); ic:=y(1) = 1; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],x]==Sqrt[x-y[x]]; ic={y[1]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
{}
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-sqrt(x - y(x)) + Derivative(y(x), x),0) ics = {y(1): 1} dsolve(ode,func=y(x),ics=ics)