Internal
problem
ID
[16084]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
19
Date
solved
:
Monday, March 31, 2025 at 02:41:18 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=t*ln(y(t))+(1/2*t^2/y(t)+1)*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(t*Log[y[t]])+(t^2/(2*y[t])+1)*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*log(y(t)) + (t**2/(2*y(t)) + 1)*Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)