74.8.15 problem 15

Internal problem ID [16080]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 15
Date solved : Monday, March 31, 2025 at 02:39:18 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} x^{\prime }&=\frac {5 t x}{x^{2}+t^{2}} \end{align*}

Maple. Time used: 3.370 (sec). Leaf size: 522
ode:=diff(x(t),t) = 5*t*x(t)/(x(t)^2+t^2); 
dsolve(ode,x(t), singsol=all);
 
\begin{align*} \text {Solution too large to show}\end{align*}

Mathematica. Time used: 0.138 (sec). Leaf size: 46
ode=D[x[t],t]==5*t*x[t]/(x[t]^2+t^2); 
ic={}; 
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {x(t)}{t}}\frac {K[1]^2+1}{(K[1]-2) K[1] (K[1]+2)}dK[1]=-\log (t)+c_1,x(t)\right ] \]
Sympy. Time used: 0.571 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
x = Function("x") 
ode = Eq(-5*t*x(t)/(t**2 + x(t)**2) + Derivative(x(t), t),0) 
ics = {} 
dsolve(ode,func=x(t),ics=ics)
 
\[ \log {\left (x{\left (t \right )} \right )} = C_{1} - \log {\left (\left (\frac {4 t^{2}}{x^{2}{\left (t \right )}} - 1\right )^{\frac {5}{8}} \right )} \]