Internal
problem
ID
[16056]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
53
Date
solved
:
Monday, March 31, 2025 at 02:37:10 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries], _Clairaut]
ode:=t*diff(y(t),t)-y(t)-1 = diff(y(t),t)^2-diff(y(t),t); dsolve(ode,y(t), singsol=all);
ode=t*D[y[t],t]-y[t]-1==D[y[t],t]^2-D[y[t],t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*Derivative(y(t), t) - y(t) - Derivative(y(t), t)**2 + Derivative(y(t), t) - 1,0) ics = {} dsolve(ode,func=y(t),ics=ics)