74.7.47 problem 47

Internal problem ID [16053]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 47
Date solved : Monday, March 31, 2025 at 02:37:03 PM
CAS classification : [_Bernoulli]

\begin{align*} y^{\prime }+y \cot \left (x \right )&=y^{4} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.008 (sec). Leaf size: 5
ode:=diff(y(x),x)+y(x)*cot(x) = y(x)^4; 
ic:=y(0) = 0; 
dsolve([ode,ic],y(x), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.001 (sec). Leaf size: 6
ode=D[y[x],x]+y[x]*Cot[x]==y[x]^4; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to 0 \]
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x)**4 + y(x)/tan(x) + Derivative(y(x), x),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(x),ics=ics)