Internal
problem
ID
[16041]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
35
Date
solved
:
Monday, March 31, 2025 at 02:34:14 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=diff(y(t),t) = 1/2*(4*y(t)^2-t^2)/t/y(t); ic:=y(1) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]==(4*y[t]^2-t^2)/(2*t*y[t]); ic={y[1]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), t) - (-t**2 + 4*y(t)**2)/(2*t*y(t)),0) ics = {y(1): 1} dsolve(ode,func=y(t),ics=ics)