74.7.32 problem 32

Internal problem ID [16038]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 32
Date solved : Monday, March 31, 2025 at 02:33:59 PM
CAS classification : [[_homogeneous, `class A`], _dAlembert]

\begin{align*} t \left (\ln \left (t \right )-\ln \left (y\right )\right ) y^{\prime }&=y \end{align*}

Maple. Time used: 0.105 (sec). Leaf size: 14
ode:=t*(ln(t)-ln(y(t)))*diff(y(t),t) = y(t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {\operatorname {LambertW}\left (c_1 t \,{\mathrm e}^{-1}\right )}{c_1} \]
Mathematica. Time used: 0.145 (sec). Leaf size: 38
ode=t*(Log[t]-Log[y[t]] )*D[y[t],t]==y[t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(t)}{t}}\frac {\log (K[1])}{K[1] (\log (K[1])+1)}dK[1]=-\log (t)+c_1,y(t)\right ] \]
Sympy. Time used: 1.109 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*(log(t) - log(y(t)))*Derivative(y(t), t) - y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t e^{- W\left (C_{1} t\right ) - 1} \]