Internal
problem
ID
[16033]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
27
Date
solved
:
Monday, March 31, 2025 at 02:31:31 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(t)^2 = (t*y(t)-4*t^2)*diff(y(t),t); dsolve(ode,y(t), singsol=all);
ode=y[t]^2==(t*y[t]-4*t^2)*D[y[t],t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-(-4*t**2 + t*y(t))*Derivative(y(t), t) + y(t)**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)