74.7.27 problem 27

Internal problem ID [16033]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 27
Date solved : Monday, March 31, 2025 at 02:31:31 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y^{2}&=\left (t y-4 t^{2}\right ) y^{\prime } \end{align*}

Maple. Time used: 0.013 (sec). Leaf size: 17
ode:=y(t)^2 = (t*y(t)-4*t^2)*diff(y(t),t); 
dsolve(ode,y(t), singsol=all);
 
\[ y = -4 t \operatorname {LambertW}\left (-\frac {{\mathrm e}^{-c_1}}{4 t}\right ) \]
Mathematica. Time used: 0.099 (sec). Leaf size: 32
ode=y[t]^2==(t*y[t]-4*t^2)*D[y[t],t]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(t)}{t}}\frac {K[1]-4}{K[1]}dK[1]=4 \log (t)+c_1,y(t)\right ] \]
Sympy. Time used: 0.637 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-(-4*t**2 + t*y(t))*Derivative(y(t), t) + y(t)**2,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - 4 t W\left (\frac {C_{1}}{t}\right ) \]