74.7.24 problem 24

Internal problem ID [16030]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 24
Date solved : Monday, March 31, 2025 at 02:31:06 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y+\left (t +y\right ) y^{\prime }&=0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 35
ode:=y(t)+(t+y(t))*diff(y(t),t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\begin{align*} y &= -t -\sqrt {t^{2}+2 c_1} \\ y &= -t +\sqrt {t^{2}+2 c_1} \\ \end{align*}
Mathematica. Time used: 0.036 (sec). Leaf size: 38
ode=y[t]+(t+y[t])*D[y[t],t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(t)}{t}}\frac {K[1]+1}{K[1] (K[1]+2)}dK[1]=-\log (t)+c_1,y(t)\right ] \]
Sympy. Time used: 0.871 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((t + y(t))*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \left [ y{\left (t \right )} = - t - \sqrt {C_{1} + t^{2}}, \ y{\left (t \right )} = - t + \sqrt {C_{1} + t^{2}}\right ] \]