74.7.22 problem 22

Internal problem ID [16028]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.5, page 64
Problem number : 22
Date solved : Monday, March 31, 2025 at 02:30:58 PM
CAS classification : [[_homogeneous, `class A`], _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} y^{\prime }&=\frac {t +4 y}{4 t +y} \end{align*}

Maple. Time used: 0.110 (sec). Leaf size: 185
ode:=diff(y(t),t) = (t+4*y(t))/(4*t+y(t)); 
dsolve(ode,y(t), singsol=all);
 
\[ y = t \left ({\mathrm e}^{\frac {2 c_1}{3}} {\left (\frac {\left (12 \,{\mathrm e}^{2 c_1} t^{2} \operatorname {RootOf}\left (\textit {\_Z}^{5} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}-\textit {\_Z}^{3}-2\right )^{3}+8 \,{\mathrm e}^{c_1} t \operatorname {RootOf}\left (\textit {\_Z}^{3}-t \,{\mathrm e}^{c_1}, \operatorname {index} =1\right ) \operatorname {RootOf}\left (\textit {\_Z}^{5} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}-\textit {\_Z}^{3}-2\right )^{4}+8 t^{2} {\mathrm e}^{2 c_1}+12 \operatorname {RootOf}\left (\textit {\_Z}^{5} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}-\textit {\_Z}^{3}-2\right ) \operatorname {RootOf}\left (\textit {\_Z}^{3}-t \,{\mathrm e}^{c_1}, \operatorname {index} =1\right ) {\mathrm e}^{c_1} t +2 \operatorname {RootOf}\left (\textit {\_Z}^{5} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}-\textit {\_Z}^{3}-2\right )^{2} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}+\operatorname {RootOf}\left (\textit {\_Z}^{5} \left (t \,{\mathrm e}^{c_1}\right )^{{2}/{3}}-\textit {\_Z}^{3}-2\right )^{3}+2\right ) {\mathrm e}^{-4 c_1}}{t^{2}}\right )}^{{1}/{3}}-1\right ) \]
Mathematica. Time used: 0.034 (sec). Leaf size: 40
ode=D[y[t],t]==(t+4*y[t])/(4*t+y[t]); 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _1^{\frac {y(t)}{t}}\frac {K[1]+4}{(K[1]-1) (K[1]+1)}dK[1]=-\log (t)+c_1,y(t)\right ] \]
Sympy. Time used: 0.918 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-(t + 4*y(t))/(4*t + y(t)) + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ \log {\left (t \right )} = C_{1} + \log {\left (\frac {\left (1 + \frac {y{\left (t \right )}}{t}\right )^{\frac {3}{2}}}{\left (-1 + \frac {y{\left (t \right )}}{t}\right )^{\frac {5}{2}}} \right )} \]