Internal
problem
ID
[16018]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.5,
page
64
Problem
number
:
12
Date
solved
:
Monday, March 31, 2025 at 02:28:48 PM
CAS
classification
:
[[_homogeneous, `class A`], _dAlembert]
ode:=y(t)*ln(t/y(t))+t^2/(t+y(t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=( y[t]*Log[t/y[t]] )+( t^2/(t+y[t]))*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), t)/(t + y(t)) + y(t)*log(t/y(t)),0) ics = {} dsolve(ode,func=y(t),ics=ics)
Timed Out