Internal
problem
ID
[15982]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
31
Date
solved
:
Monday, March 31, 2025 at 02:20:37 PM
CAS
classification
:
[_separable]
With initial conditions
ode:=2*t*y(t)^2+2*t^2*y(t)*diff(y(t),t) = 0; ic:=y(1) = 1; dsolve([ode,ic],y(t), singsol=all);
ode=(2*t*y[t]^2)+(2*t^2*y[t])*D[y[t],t]==0; ic={y[1]==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t**2*y(t)*Derivative(y(t), t) + 2*t*y(t)**2,0) ics = {y(1): 1} dsolve(ode,func=y(t),ics=ics)