Internal
problem
ID
[15970]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
19
Date
solved
:
Monday, March 31, 2025 at 02:17:06 PM
CAS
classification
:
[_separable]
ode:=sin(y(t))^2+t*sin(2*y(t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=Sin[y[t]]^2+(t*Sin[2*y[t]])*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*sin(2*y(t))*Derivative(y(t), t) + sin(y(t))**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)