Internal
problem
ID
[15959]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
7
Date
solved
:
Monday, March 31, 2025 at 02:16:33 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=y(t)*sin(2*t)+(y(t)^(1/2)+cos(2*t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=y[t]*Sin[2*t]+(Sqrt[y[t]]+Cos[2*t])*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((sqrt(y(t)) + cos(2*t))*Derivative(y(t), t) + y(t)*sin(2*t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
Timed Out