Internal
problem
ID
[15949]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.3,
page
49
Problem
number
:
63
(a)
Date
solved
:
Monday, March 31, 2025 at 02:14:22 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(t),t)+y(t) = t; ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=D[y[t],t]+y[t]==t; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t + y(t) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)