74.5.54 problem 60 (b)

Internal problem ID [15947]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.3, page 49
Problem number : 60 (b)
Date solved : Monday, March 31, 2025 at 02:14:17 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }-\frac {y}{2}&=\sin \left (t \right ) \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=a \end{align*}

Maple. Time used: 0.027 (sec). Leaf size: 21
ode:=diff(y(t),t)-1/2*y(t) = sin(t); 
ic:=y(0) = a; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = -\frac {4 \cos \left (t \right )}{5}-\frac {2 \sin \left (t \right )}{5}+{\mathrm e}^{\frac {t}{2}} \left (a +\frac {4}{5}\right ) \]
Mathematica. Time used: 0.058 (sec). Leaf size: 34
ode=D[y[t],t]-y[t]/2==Sin[t]; 
ic={y[0]==a}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{t/2} \left (\int _0^te^{-\frac {K[1]}{2}} \sin (K[1])dK[1]+a\right ) \]
Sympy. Time used: 0.145 (sec). Leaf size: 26
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)/2 - sin(t) + Derivative(y(t), t),0) 
ics = {y(0): a} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (a + \frac {4}{5}\right ) e^{\frac {t}{2}} - \frac {2 \sin {\left (t \right )}}{5} - \frac {4 \cos {\left (t \right )}}{5} \]