Internal
problem
ID
[15930]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.3,
page
49
Problem
number
:
38
(c)
Date
solved
:
Monday, March 31, 2025 at 02:13:41 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)-1/t*diff(y(t),t)+1/t^2*y(t) = 1/t; dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-1/t*D[y[t],t]+1/t^2*y[t]==1/t; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), (t, 2)) - Derivative(y(t), t)/t - 1/t + y(t)/t**2,0) ics = {} dsolve(ode,func=y(t),ics=ics)