74.5.35 problem 35

Internal problem ID [15928]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.3, page 49
Problem number : 35
Date solved : Monday, March 31, 2025 at 02:13:37 PM
CAS classification : [[_linear, `class A`]]

\begin{align*} y^{\prime }&={\mathrm e}^{2 t}+2 y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=0 \end{align*}

Maple. Time used: 0.024 (sec). Leaf size: 10
ode:=diff(y(t),t) = exp(2*t)+2*y(t); 
ic:=y(0) = 0; 
dsolve([ode,ic],y(t), singsol=all);
 
\[ y = {\mathrm e}^{2 t} t \]
Mathematica. Time used: 0.042 (sec). Leaf size: 12
ode=D[y[t],t]==Exp[2*t]+2*y[t]; 
ic={y[0]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ y(t)\to e^{2 t} t \]
Sympy. Time used: 0.143 (sec). Leaf size: 8
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*y(t) - exp(2*t) + Derivative(y(t), t),0) 
ics = {y(0): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = t e^{2 t} \]