74.4.31 problem 31

Internal problem ID [15853]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 31
Date solved : Monday, March 31, 2025 at 02:02:45 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=t^{2} y^{2}+y^{2}-t^{2}-1 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 15
ode:=diff(y(t),t) = t^2*y(t)^2+y(t)^2-t^2-1; 
dsolve(ode,y(t), singsol=all);
 
\[ y = -\tanh \left (\frac {1}{3} t^{3}+c_1 +t \right ) \]
Mathematica. Time used: 0.271 (sec). Leaf size: 49
ode=D[y[t],t]==t^2*y[t]^2+y[t]^2-t^2-1; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) (K[1]+1)}dK[1]\&\right ]\left [\frac {t^3}{3}+t+c_1\right ] \\ y(t)\to -1 \\ y(t)\to 1 \\ \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t**2*y(t)**2 + t**2 - y(t)**2 + Derivative(y(t), t) + 1,0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
Timed Out