Internal
problem
ID
[15810]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.1,
page
32
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 01:56:15 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=t^3*diff(y(t),t)+t^4*y(t) = 2*t^3; ic:=y(0) = 0; dsolve([ode,ic],y(t), singsol=all);
ode=t^3*D[y[t],t]+t^4*y[t]==2*t^3; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**4*y(t) + t**3*Derivative(y(t), t) - 2*t**3,0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)