Internal
problem
ID
[15753]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
1.
Introduction
to
Differential
Equations.
Exercises
1.1,
page
10
Problem
number
:
51
Date
solved
:
Monday, March 31, 2025 at 01:47:10 PM
CAS
classification
:
[[_3rd_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(y(x),x),x),x)-2*diff(diff(y(x),x),x) = 0; ic:=y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = 3; dsolve([ode,ic],y(x), singsol=all);
ode=D[y[x],{x,3}]-2*D[y[x],{x,2}]==0; ic={y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==3}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1, Subs(Derivative(y(x), (x, 2)), x, 0): 3} dsolve(ode,func=y(x),ics=ics)