Internal
problem
ID
[644]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.4
(The
eigenvalue
method
for
homogeneous
systems).
Problems
at
page
378
Problem
number
:
24
Date
solved
:
Saturday, March 29, 2025 at 05:01:26 PM
CAS
classification
:
system_of_ODEs
ode:=[diff(x__1(t),t) = 2*x__1(t)+x__2(t)-x__3(t), diff(x__2(t),t) = -4*x__1(t)-3*x__2(t)-x__3(t), diff(x__3(t),t) = 4*x__1(t)+4*x__2(t)+2*x__3(t)]; dsolve(ode);
ode={D[x1[t],t]==2*x1[t]+x2[t]-x3[t],D[x2[t],t]==-4*x1[t]-3*x2[t]-x3[t],D[x3[t],t]==4*x1[t]+4*x2[t]+2*x3[t]}; ic={}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(-2*x__1(t) - x__2(t) + x__3(t) + Derivative(x__1(t), t),0),Eq(4*x__1(t) + 3*x__2(t) + x__3(t) + Derivative(x__2(t), t),0),Eq(-4*x__1(t) - 4*x__2(t) - 2*x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)