Internal
problem
ID
[15714]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
1.
Introduction
to
Differential
Equations.
Exercises
1.1,
page
10
Problem
number
:
6
Date
solved
:
Monday, March 31, 2025 at 01:45:51 PM
CAS
classification
:
[[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]
ode:=t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)+2*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+t*D[y[t],t]+2*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + t*Derivative(y(t), t) + 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)