73.23.9 problem 33.3 (i)

Internal problem ID [15584]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.3 (i)
Date solved : Monday, March 31, 2025 at 01:41:44 PM
CAS classification : [_separable]

\begin{align*} \left (-x^{3}+2\right ) y^{\prime }-3 x^{2} y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.004 (sec). Leaf size: 19
Order:=6; 
ode:=(-x^3+2)*diff(y(x),x)-3*x^2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+\frac {x^{3}}{2}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 15
ode=(2-x^3)*D[y[x],x]-3*x^2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {x^3}{2}+1\right ) \]
Sympy. Time used: 0.789 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x**2*y(x) + (2 - x**3)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} + \frac {C_{1} x^{3}}{2} + O\left (x^{6}\right ) \]