73.23.6 problem 33.3 (f)

Internal problem ID [15581]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.3 (f)
Date solved : Monday, March 31, 2025 at 01:41:41 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }+\frac {y}{x -1}&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 27
Order:=6; 
ode:=diff(y(x),x)+1/(x-1)*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (x^{5}+x^{4}+x^{3}+x^{2}+x +1\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 21
ode=D[y[x],x]+1/(x-1)*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (x^5+x^4+x^3+x^2+x+1\right ) \]
Sympy. Time used: 0.699 (sec). Leaf size: 31
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(Derivative(y(x), x) + y(x)/(x - 1),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} + C_{1} x + C_{1} x^{2} + C_{1} x^{3} + C_{1} x^{4} + C_{1} x^{5} + O\left (x^{6}\right ) \]