73.23.1 problem 33.3 (a)

Internal problem ID [15576]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 33. Power series solutions I: Basic computational methods. Additional Exercises. page 641
Problem number : 33.3 (a)
Date solved : Monday, March 31, 2025 at 01:41:34 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }-2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 37
Order:=6; 
ode:=diff(y(x),x)-2*y(x) = 0; 
dsolve(ode,y(x),type='series',x=0);
 
\[ y = \left (1+2 x +2 x^{2}+\frac {4}{3} x^{3}+\frac {2}{3} x^{4}+\frac {4}{15} x^{5}\right ) y \left (0\right )+O\left (x^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 37
ode=D[y[x],x]-2*y[x]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[x],{x,0,5}]
 
\[ y(x)\to c_1 \left (\frac {4 x^5}{15}+\frac {2 x^4}{3}+\frac {4 x^3}{3}+2 x^2+2 x+1\right ) \]
Sympy. Time used: 0.687 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics,hint="1st_power_series",x0=0,n=6)
 
\[ y{\left (x \right )} = C_{1} + 2 C_{1} x + 2 C_{1} x^{2} + \frac {4 C_{1} x^{3}}{3} + \frac {2 C_{1} x^{4}}{3} + \frac {4 C_{1} x^{5}}{15} + O\left (x^{6}\right ) \]