Internal
problem
ID
[15514]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
27.
Differentiation
and
the
Laplace
transform.
Additional
Exercises.
page
496
Problem
number
:
27.1
(a)
Date
solved
:
Monday, March 31, 2025 at 01:40:07 PM
CAS
classification
:
[_quadrature]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+4*y(t) = 0; ic:=y(0) = 3; dsolve([ode,ic],y(t),method='laplace');
ode=D[y[t],t]+4*y[t]==0; ic={y[0]==3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*y(t) + Derivative(y(t), t),0) ics = {y(0): 3} dsolve(ode,func=y(t),ics=ics)