Internal
problem
ID
[15508]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
25.
Review
exercises
for
part
III.
page
447
Problem
number
:
45
Date
solved
:
Monday, March 31, 2025 at 01:39:56 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=4*diff(diff(y(x),x),x)-12*diff(y(x),x)+9*y(x) = x*exp(3/2*x); dsolve(ode,y(x), singsol=all);
ode=4*D[y[x],{x,2}]-12*D[y[x],x]+9*y[x]==x*Exp[3*x/2]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*exp(3*x/2) + 9*y(x) - 12*Derivative(y(x), x) + 4*Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)