Internal
problem
ID
[619]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
29
and
38
Date
solved
:
Saturday, March 29, 2025 at 05:00:52 PM
CAS
classification
:
system_of_ODEs
With initial conditions
ode:=[diff(x__1(t),t) = -8*x__1(t)-11*x__2(t)-2*x__3(t), diff(x__2(t),t) = 6*x__1(t)+9*x__2(t)+2*x__3(t), diff(x__3(t),t) = -6*x__1(t)-6*x__2(t)+x__3(t)]; ic:=x__1(0) = 5x__2(0) = -7x__3(0) = 11; dsolve([ode,ic]);
ode={D[x1[t],t]==-8*x1[t]-11*x2[t]-2*x3[t],D[x2[t],t]==6*x1[t]+9*x2[t]+2*x3[t],D[x3[t],t]==-6*x1[t]-6*x2[t]+x3[t]}; ic={x1[0]==5,x2[0]==-7,x3[0]==11}; DSolve[{ode,ic},{x1[t],x2[t],x3[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x__1 = Function("x__1") x__2 = Function("x__2") x__3 = Function("x__3") ode=[Eq(8*x__1(t) + 11*x__2(t) + 2*x__3(t) + Derivative(x__1(t), t),0),Eq(-6*x__1(t) - 9*x__2(t) - 2*x__3(t) + Derivative(x__2(t), t),0),Eq(6*x__1(t) + 6*x__2(t) - x__3(t) + Derivative(x__3(t), t),0)] ics = {} dsolve(ode,func=[x__1(t),x__2(t),x__3(t)],ics=ics)