73.17.30 problem 30

Internal problem ID [15493]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 30
Date solved : Monday, March 31, 2025 at 01:39:25 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-5 y^{\prime }&=0 \end{align*}

Maple. Time used: 0.002 (sec). Leaf size: 12
ode:=diff(diff(y(x),x),x)-5*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 +c_2 \,{\mathrm e}^{5 x} \]
Mathematica. Time used: 0.01 (sec). Leaf size: 19
ode=D[y[x],{x,2}]-5*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to \frac {1}{5} c_1 e^{5 x}+c_2 \]
Sympy. Time used: 0.142 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-5*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} + C_{2} e^{5 x} \]