73.17.24 problem 24

Internal problem ID [15487]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 24
Date solved : Monday, March 31, 2025 at 01:39:15 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 2 x^{2} y^{\prime \prime }-3 x y^{\prime }+2 y&=0 \end{align*}

Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=2*x^2*diff(diff(y(x),x),x)-3*x*diff(y(x),x)+2*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \sqrt {x}+c_2 \,x^{2} \]
Mathematica. Time used: 0.012 (sec). Leaf size: 20
ode=2*x^2*D[y[x],{x,2}]-3*x*D[y[x],x]+2*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to c_2 x^2+c_1 \sqrt {x} \]
Sympy. Time used: 0.151 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - 3*x*Derivative(y(x), x) + 2*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} \sqrt {x} + C_{2} x^{2} \]