73.17.18 problem 18

Internal problem ID [15481]
Book : Ordinary Differential Equations. An introduction to the fundamentals. Kenneth B. Howell. second edition. CRC Press. FL, USA. 2020
Section : Chapter 25. Review exercises for part III. page 447
Problem number : 18
Date solved : Monday, March 31, 2025 at 01:39:06 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-8 y^{\prime }+25 y&=0 \end{align*}

Maple. Time used: 0.001 (sec). Leaf size: 22
ode:=diff(diff(y(x),x),x)-8*diff(y(x),x)+25*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{4 x} \left (c_1 \sin \left (3 x \right )+c_2 \cos \left (3 x \right )\right ) \]
Mathematica. Time used: 0.018 (sec). Leaf size: 26
ode=D[y[x],{x,2}]-8*D[y[x],x]+25*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\[ y(x)\to e^{4 x} (c_2 \cos (3 x)+c_1 \sin (3 x)) \]
Sympy. Time used: 0.167 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(25*y(x) - 8*Derivative(y(x), x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} \sin {\left (3 x \right )} + C_{2} \cos {\left (3 x \right )}\right ) e^{4 x} \]