Internal
problem
ID
[15479]
Book
:
Ordinary
Differential
Equations.
An
introduction
to
the
fundamentals.
Kenneth
B.
Howell.
second
edition.
CRC
Press.
FL,
USA.
2020
Section
:
Chapter
25.
Review
exercises
for
part
III.
page
447
Problem
number
:
16
Date
solved
:
Monday, March 31, 2025 at 01:39:03 PM
CAS
classification
:
[[_2nd_order, _missing_x], _Liouville, [_2nd_order, _reducible, _mu_xy]]
ode:=diff(diff(y(x),x),x) = diff(y(x),x)^2; dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,2}]==D[y[x],x]^2; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-Derivative(y(x), x)**2 + Derivative(y(x), (x, 2)),0) ics = {} dsolve(ode,func=y(x),ics=ics)